How (and why) do we use MCBX for crossing angles and separation bumps

W. Herr

> No MCBX foreseen for crossing angle or separation

Modified layout (2000 -)

> MCBX added near Q1 for crossing angle/separation only

Powering requirements

Due to symmetry conditions for two beams:

Crossing angle:

 \rightarrow ACBX1.left = - ACBX1.right

Separation bump:

 \rightarrow ACBX1.left = ACBX1.right

See also: LHC-Project-Reports 315 and 367.

Why use MCBX ?

Crossing angle and parallel separation :

> In principle: 4-magnet bumps

Can (should be) separate for the two beams

Problem:

> Insufficient strength for crossing angle at low β at collision energy

Crossing angle - collision

(m) x

> Crossing angle at $\beta = 2$ m at IP8, no MCBX

Crossing angle - collision

x(m)

> Crossing angle at $\beta = 2$ m at IP8, with MCBX

Why use MCBX ?

- Insufficient strength for crossing angle at low β at collision energy
 - Maximum required strength without MCBX: $\approx 130 \ \mu \mathrm{rad} \ (\mathrm{MCBY} \ \mathrm{at} \ \mathrm{Q4})$
 - > Maximum required strength with MCBX: $\approx 50 \ \mu rad \ (MCBY \ at \ Q4)$
- → For crossing angle at low β at collision energy, MCBX indispensible

Why use MCBX ?

Crossing angle and parallel separation :

> In principle: 4-magnet bumps

> Can (should be) separate for the two beams

Problem:

- > Insufficient strength for crossing angle at low β at collision energy
- > Large aperture required for separation bump at injection

Separation bump - injection

> Parallel separation at $\beta = 10$ m at IP8, no MCBX

Separation bump - injection

> Parallel separation at $\beta = 10$ m at IP8, with MCBX

Crossing angle - injection

(m) x

> Crossing angle at $\beta = 10$ m at IP8, no MCBX

Crossing angle - injection

(m) x

> Crossing angle at $\beta = 10$ m at IP8, with MCBX

Summary: injection

- > No issue for crossing angle (works with or without MCBX)
- > For parallel separation bump used to keep required aperture small (not a strength issue)
- > What about separation bump at collision energy ?

Separation bump - collision

> Parallel separation at $\beta = 2$ m at IP8, with MCBX

Separation bump - collision

Separation bump - collision

- At injection: MCBX used to reduce required aperture
- **At high energy and low** β :
 - > Smaller beam size
 - Smaller separation needed (1.2 mm instead 4 mm)
- Aperture not the issue for separation bump

Required strengths

Strengths increase on other correctors (e.g. in IP8):

- > MCBY at Q4 from \approx 10 µrad to \approx 90 µrad
- > Maximum strength MCBY at Q4: \approx 135 µrad at 5 TeV
- > 90 μ rad correspond to \approx 50 A

Conclusions

- MCBX strictly required for crossing angle, but static
- MCBX for separation bump not needed at top energy
 - MCBX for separation bump can be ramped down before going into collision, and can stop discussing MCBX ramp rates
 - Separation bump controlled only by (non-common) correctors, strengths are sufficient for IP8
 - Ramping speed determined by these (non-common) correctors