How (and why) do we use MCBX for crossing angles and separation bumps

W. Herr

- No MCBX foreseen for crossing angle or separation

Modified layout (2000-)

- MCBX added near Q1 for crossing angle/separation only

Powering requirements

Due to symmetry conditions for two beams:
[Crossing angle:
\Rightarrow ACBX1.left $=-$ ACBX1.right
Separation bump:

- ACBX1.left $=$ ACBX1.right

See also: LHC-Project-Reports 315 and 367.

Why use MCBX ?

Crossing angle and parallel separation :

- In principle: 4-magnet bumps
- Can (should be) separate for the two beams

丮 Problem:

- Insufficient strength for crossing angle at low β at collision energy

Crossing angle - collision

\Rightarrow Crossing angle at $\beta=2 \mathrm{~m}$ at IP8, no MCBX

Crossing angle - collision

\Rightarrow Crossing angle at $\beta=2 \mathrm{~m}$ at IP8, with MCBX

Why use MCBX ?

[Insufficient strength for crossing angle at low β at collision energy

- Maximum required strength without MCBX:
$\approx 130 \mu \mathrm{rad}(\mathrm{MCBY}$ at Q 4$)$
- Maximum required strength with MCBX: $\approx 50 \mu \mathrm{rad}(\mathrm{MCBY}$ at Q4)
\rightarrow For crossing angle at low β at collision energy, MCBX indispensible

Why use MCBX ?

Crossing angle and parallel separation :

- In principle: 4-magnet bumps
- Can (should be) separate for the two beams

國 Problem:

- Insufficient strength for crossing angle at low β at collision energy
- Large aperture required for separation bump at injection

Separation bump - injection

- Parallel separation at $\beta=10 \mathrm{~m}$ at IP8, no MCBX

Separation bump - injection

- Parallel separation at $\beta=10 \mathrm{~m}$ at IP8, with MCBX

Crossing angle - injection

\Rightarrow Crossing angle at $\beta=10 \mathrm{~m}$ at IP8, no MCBX

Crossing angle - injection

\wedge Crossing angle at $\beta=10 \mathrm{~m}$ at IP8, with MCBX

Summary: injection

- No issue for crossing angle (works with or without MCBX)
- For parallel separation bump used to keep required aperture small (not a strength issue)
- What about separation bump at collision energy ?

Separation bump - collision

- Parallel separation at $\beta=2 \mathrm{~m}$ at IP8, with MCBX

Separation bump - collision

- Parallel separation at $\beta=2 \mathrm{~m}$ at IP8, no MCBX
- Aperture loss much smaller than at injection

Separation bump - collision

(At injection: MCBX used to reduce required aperture

At high energy and low β :

- Smaller beam size
- Smaller separation needed (1.2 mm instead 4 mm)
\rightarrow Aperture not the issue for separation bump

Required strengths

Strengths increase on other correctors (e.g. in IP8):

- MCBY at Q 4 from $\approx 10 \mu \mathrm{rad}$ to $\approx 90 \mu \mathrm{rad}$
- Maximum strength MCBY at Q4: $\approx 135 \mu \mathrm{rad}$ at 5 TeV
- $90 \mu \mathrm{rad}$ correspond to $\approx 50 \mathrm{~A}$

Conclusions

MCBX strictly required for crossing angle, but static

- MCBX for separation bump not needed at top energy
- MCBX for separation bump can be ramped down before going into collision, and can stop discussing MCBX ramp rates
- Separation bump controlled only by (non-common) correctors, strengths are sufficient for IP8
- Ramping speed determined by these (non-common) correctors

