Recent beam-beam observations

(... and some more beam-beam basics)
reported by W. Herr

Beam-beam observations, 2 sessions planned
31. October

- 12 bunches per train, 50 ns spacing, stable beams
- observation of stable beams, separation scan IP8, damper off
First significant long range contribution

4. November

- 24 bunches per train, 50 ns spacing, stable beams
- observation of stable beams, separation scan IP8, damper off
Full long range contribution

Beam-beam observations, 2 sessions planned
31. October

- 12 bunches per train, 50 ns spacing, stable beams
- observation of stable beams, separation scan IP8, damper off
First significant long range contribution

4. November no beam!

- 24 bunches per train, 50 ns spacing, stable beams
- observation of stable beams, separation scan IP8, damper off
Full long range contribution

The interest for beam-beam:

Shorter bunch spacing
國 Many more long range interactions
Separation in LHCb to reduce luminosity:

- Works in ALICE

D Does it work with many additional LR interactions?
Do bunches behave (even more) differently ? (some numerology first ..)

Numerology - collisions

$\rightarrow 150 \mathrm{~ns}$ spacing, 8 bunches per train, 424 bunches, maximum head-on: 3

Numerology - collisions

$\rightarrow 150 \mathrm{~ns}$ spacing, 8 bunches per train, 424 bunches, maximum long range: 18

Numerology - collisions

$\rightarrow 50 n s$ spacing, 12 bunches per train, 108 bunches, maximum head-on: 3

Numerology - collisions

$\rightarrow 50 n s$ spacing, 12 bunches per train, 108 bunches, maximum long range: 45

Numerology - collisions

$\rightarrow 50 \mathrm{~ns}$ spacing, 24 bunches per train, 108 bunches, maximum head-on: 4

Numerology - collisions

\rightarrow 50ns spacing, 24 bunches per train, 108 bunches, maximum long range: 64

Numerology - collisions

	$150 \mathrm{~ns}, 8 \mathrm{~b}$	$50 \mathrm{~ns}, 12 \mathrm{~b}$	$50 \mathrm{~ns}, 24 \mathrm{~b}$
Total bunches	424	108	108
Maximum head on	3	3	4
Maximum long range	18	45	64

Observations in stable beam mode (31.10.)

Conditions:

\rightarrow About 40\% bunch to bunch intensity fluctuations (reduction along the train)
\rightarrow Chromaticity unknown (big losses at end of squeeze, cured with ADT)
\rightarrow Emittances $\approx 3 \mu \mathrm{~m}$
\rightarrow No fast BCT logged during the experiments ..

Beam losses, 12b/train

(Prepared by G. Papotti BE-OP-LHC)
\rightarrow Beam losses during the run, strong variation (long range ?)

Beam losses, 12b/train

(Prepared by G. Papotti BE-OP-LHC)
\rightarrow Losses during the run (beam 1), each train separately

Beam losses, 12b/train

(Prepared by G. Papotti BE-OP-LHC)
\rightarrow Losses, each train separately, bunches sorted

Beam losses, 12b/train

(Prepared by G. Papotti BE-OP-LHC)
\rightarrow Losses during the run, for bunch position within train

Observations in stable beam mode

國 First physics run with 50 ns spacing， 12 bunches／train
國 Loss pattern reflects（somehow）collision scheme
國 Clear effect of long range interactions not（yet）visible （but may be there）
\rightarrow Study with 24 or 36 bunches per train will improve the picture
\rightarrow Single bunch tune measurement would allow to bring it home（available for second session only）

Separated beams in LHCb

\rightarrow Purpose: test whether can run with separated beams (reduced luminosity)
\rightarrow Beams were separated slowly up to 6σ
\rightarrow No effect on life time or tune spectra visible
\rightarrow However: limited long range contribution (only 12 b/train), should be repeated for $24 \mathrm{~b} /$ train, otherwise not conclusive

Transverse damper off

\rightarrow Damper (ADT) was turned off to observe effect in frequency spectra
\rightarrow Procedure:

- Reduce gain to half (no effect)
- Switch off completely (beam losses start after ≈ 10 seconds)
- Switch on again (beam stable)
- Repeat procedure with tune split between beams 0.005 , (beam stable)
\rightarrow Did we observe a coherent beam-beam mode ?

Interlude: coherent beam-beam

* The two beams can couple to coherent beam-beam modes (0 -mode, π-mode, higher order)
- Strictly speaking: unstable only near low order resonance
\Rightarrow Oscillation can cause emittance growth or some losses
- Can be cured with feedback or avoided by proper choice of parameters
- Most important for very clean machine: 1x1 bunch
\rightarrow How do they look like ?

Beam-beam coherent modes - spectra

\rightarrow Continuum (tune spread), 2 peaks (0 - and π-mode)
\rightarrow Soft Gaussian approximation and correct computation
$\rightarrow " \pi "$-mode outside incoherent spectrum (i.e. beam-beam tune spread), no Landau damping ..

Beam-beam coherent modes - cures

國 Breaking the symmetry: moves $" \pi "$-mode closer (or into) to incoherent spectrum, Landau damping restored

- Caused by (e.g., there are more ..):
\rightarrow Different tunes (tune split or bunch-to-bunch tune variation)
\rightarrow Different tune shifts (different Intensities, Emittances, collision schemes)
\rightarrow Synchrotron sidebands
No coherent modes when the machine is dirty enough
回 Most important for very clean machine: 1x1 bunch

Numerology - collisions

\rightarrow 50ns spacing, 12 bunches per train, 108 bunches, maximum head-on: 3
\rightarrow clean for some bunches !

Beam-beam coherent modes

\rightarrow Intensity ratio 0.65 and 0.55
$\rightarrow \pi$-mode merged with incoherent spectrum \rightarrow Landau damped

Beam-beam coherent modes

\rightarrow Tune split: $\Delta \mathrm{Q}=0.002$ and $\Delta \mathrm{Q}=0.003$
$\rightarrow \pi$-mode beams decoupled, but ...

Beam-beam coherent modes

Have we observed a coherent beam-beam mode?
\rightarrow Maybe, but:
\rightarrow Experimental conditions not optimal (number of bunches, chromaticity ?)
\rightarrow Damper already needed before colliding beams
\rightarrow Diagnostics not optimal (bunch by bunch necessary, should be better now, but ..)

鲟 Need more tests with 24 bunches per train (50 ns)

