Observations during stable beams

(follow up: sudden beam losses, very preliminary ...) to trigger discussions and possible strategies

W. Herr (ABP-CLIC), E. Laface (ABP)

Conditions

Conditions:

- Squeeze to 3.5 m with separation bumps on
- Crossing angles in all IPs
- Basic filling scheme: 3 bunches per beam, $\approx 10^{11} /$ bunch slots: 1 - 895-1786 / 1 - 892 - 1786 buckets: 1(3) - 8941(2) - 17851(3) / 1(3) 8911(2) - 17851(3)
- $6,7,12,13, \ldots$ bunches are derived from this usually a tune split applied

Side-effects of these conditions

國 Unequal collision scheme:

- Bunches 1, 1786: 3 head on collisions
- Bunches 895/892: 2 head on, 1 long range collisions
- Long range separation not very large, depends on emittance, β-beating
\rightarrow Rather different tune spread and shift

A few observations

Sudden beam losses observed during a fill (very fast and not reproducible, makes analysis difficult)

- Adding a witness bunch (7×7) indicates that loss is beam-beam related.

Here some of the observations
Discuss and test some of the possible causes

Very first occasion: Sunday, 20.6.

- Small loss on beam 2 with emittance increase, followed by strong loss on beam 1
\rightarrow Note: emittance increase seen by wire scanners too large

Friday, 25.6.

Simultaneous loss in both beams together with emittance increase (vertical)
\rightarrow Note: happened about 1 min after a lumi scan

Saturday, 26.6.

- No intensity loss, but strong tune change during collapse ? Locked on some mode ?

If real, tune difference very large for coherent beam-beam modes (unless ..)

Sunday, 27.6.

- Modest loss and emittance increase on beam 2

Something is happening on the beam before the second loss

- What happened to the tunes?

Sunday, 27.6.

- Strong fluctuation of peak signal on beam 2 before the loss, quiet after .., additional modes, tune split, different bunches?

Any other observation?

Sunday, 27.6.

Bunch length of beam 2 slightly smaller, observed again later

Tuesday, 29.6.

Similar observation, happened again a few minutes after a lumi scan

Tuesday, 29.6.

Tunes: not very clear signature

Tuesday, 29.6.

Small change of bunch length on one beam

Thursday, 1.7.

Beam 1 only, well known signature
Observation: large luminosity drop in ATLAS and CMS (much less in ALICE, LHCb) about 5 min before loss, (reconstructed beam size increase in both planes)

1.7.

Tunes: very clear signal during time of the loss
1.7.

Small change of bunch length on one beam

What could be the reason?

Is it related to beam-beam ?
\rightarrow Yes, but how ... (cause versus symptom)

- Unequal collision pattern and emittances ?
\rightarrow Test with collision scheme equal number of collisions for all bunches (10x10, but should have nominal intensities)
- Contribution of the (single) long range encounter ?
\rightarrow Test with equal number of collisions and no long range
- Reduction of dynamic aperture due to beam-beam?
\rightarrow No ! Should cause bad life time and be worse after emittance increase

What could be the reason?

- Unequal beam sizes (remember SPS) ?
\rightarrow Very unlikely, should lead to bad lifetime, but not to a sudden loss
$\rightarrow \beta$-beating: as above, except for long range interaction
\rightarrow What if emittances are smaller that we think: strong coherent dipole kicks when beams are moving, check !
- Coherent beam-beam, self exciting ?
\rightarrow Very unlikely with unequal bunches, but cannot exclude, should never happen with tune split
\rightarrow (Note bene: 3rd order can drive coherent beam-beam, for a while)

What could be the reason ?

- (Small) excitation from outside source (hump ? not always present) ?
\rightarrow Any excitation of one beam can (will) cause troubles when beams are in collision (are all gadets off ?)
\rightarrow Remember: we have basically nominal intensity, i.e. head-on beam-beam
\rangle Any RF noise (e.g. phase) ?
\rightarrow Possible, needs to be studied

What could be the reason?

- Loss of Landau damping ?
\rightarrow Always possible, but requires collective motion (open a big hole) and change of damping
\rightarrow Behaviour seems to be far too "reproducible" for that
- Effect of crossing angle ?
\rightarrow Possible, if something moves the beam longitudinally (RF noise)
\rightarrow Test without crossing angle (filling scheme) and maybe with RF

Summary I

- Behaviour not yet understood
- Some candidates, need to be tested, ideally under simplified conditions
- Beam-beam yes, but unlikely to be the cause, rather the executioner ..

Summary II

- Recommend to test some of the possible culprits (first attempts with 10 bunches)
- Transient dipole kick difficult to avoid, should try with FB, possibly at end of fill first
\rangle Must try to understand, retreat to "working" scenario not a long term solution
- For equal number of collisions per bunch and per IP, we pay a big price
- Follow up continues ..

