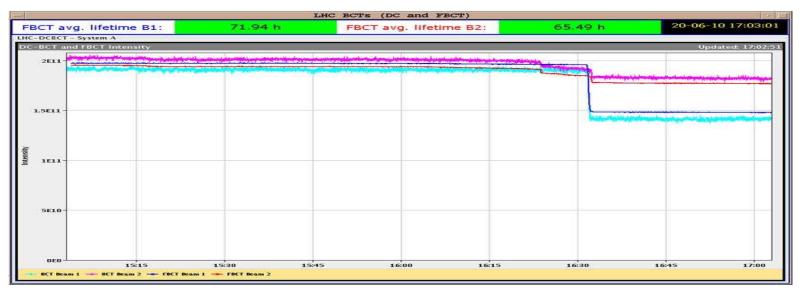
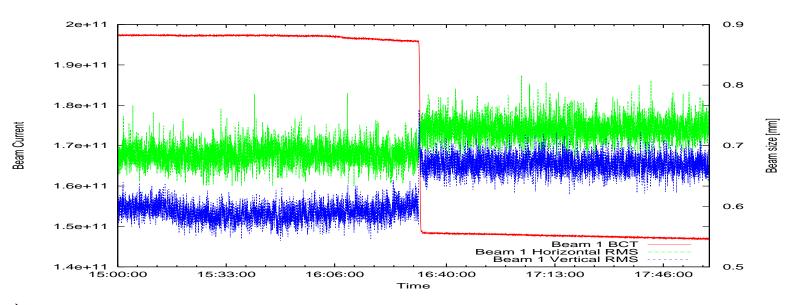
Comments*) on collisions 19./20. June

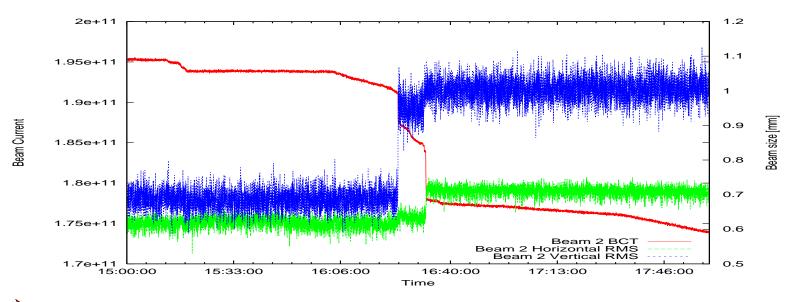

- Objectives:
 - High intensity collisions in all IPs
 - > Squeezed optics, $\beta^* = 3.5 \text{ m}$
 - Establish crossing angles in IP1 and IP5

*) preliminary, for CCC crews et al.

Comments on collisions 19./20. June


- Conditions and procedure:
 - Squeeze with separation bumps on, 2 bunches per beam, $\approx 10^{11}/\text{bunch}$ slots: 1 1786 / 1 892 buckets: 1(3) 17851(1) / 1(2) 8911(2)
 - Collapse separation one-by-one, order 1 8 2 5 (minimize unbalanced collision pattern)
 - Non-closure corrected with dedicated correctors only (Sunday)
 - Transverse scans to find maximum overlap

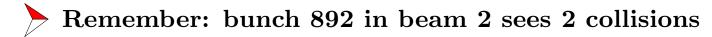
What happened during collapsing?


- Intensity during collapsing of bunches
- No effect when IP1 and IP8 bumps collapsed, first losses with collisions in IP2, more with IP5
- All losses occured when lumi-scan values (previous day) were applied

Details for beam 1

- Loss when last bump (IP5) was collapsed (over $\approx 30 \text{ s}$)
- About half of bunch 1 (beam1) lost, nothing seen on bunch 1786, clearly visible on BQM
- Small emittance increase in both planes

Details for beam 2



- First loss when colliding in IP2, second with collisions in IP5
- Emittance increase in both planes, more pronounced in vertical plane, stronger increase when IP2 collided

Summary: emittance*) evolution

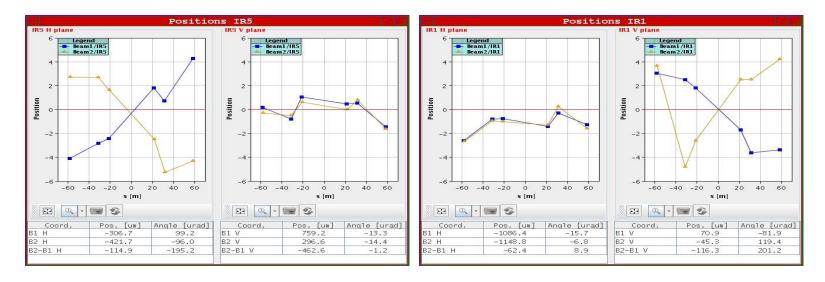
collisions:	-	1	1-8	1-8-2	1-8-2-5
ϵ_x^1	4.1	4.1	4.1	4.1	6.5
ϵ_v^1	3.8	3.8	3.8	4.1	12.3
ϵ_x^2	5.8	5.9	5.8	5.7	12.1
ϵ_v^2	5.7	5.7	5.8	10.9	12.5

First visible effect after IP2 in collision

^{*)} from wire scanner, not consistent with previous pictures ...

Observations collapsing bumps

- No problems initially
- Before collapsing IP5, tune split of 0.002 was applied
- Beam loss when lumi-scan trim applied, looked like transient but coherent motion, quickly damped
- Reminder:
 - Tune split can avoid coherent oscillation driven by beam-beam, not an excitation
 - Tune split already from unequal collision pattern
 - The applied tune "split" brings beam 1 and beam 2 together!


Observations transverse scan

- Collisions in 1, 2, 5 easy to find
- IP8 was far off from the expected position (needed 6 σ offset)
- After optimization stable luminosity for most of the time

Crossing angles

- Introduce crossing angles (LHCf, avoid additional encounter in 3-bunch schemes)
 - \blacktriangleright IP1: vertical \mp 100 μ rad (beams moving downward)
 - \blacktriangleright IP5: horizontal \pm 100 μ rad (beams moving outward)
- Closure and small cross-talk corrected

Crossing angles in IP1 and IP5

Crossing in IP1 and IP5 as expected without trim

Observations crossing angles

- No effect on beam lifetime, rather well closed, small coupling into other plane
- No additional transverse scan required
- Expected loss of luminosity: 0.5%, consistent with observations
- \longrightarrow Don't be afraid of crossing angles, they are just bumps!

Towards higher current:

- Working point not necessarily optimized
 - Make tune scan to find best tune for this configuration
 - > Check on lifetime, background, luminosity ...
- Have to find a strategy to collide beams
 - All at once?
 - Fast or slow?
- Devise a strategy for implementation of tune trim, orbit trims, IP optimization etc.