Bunch trains and crossing angles at injection

(rumours and facts ...)

reported by W. Herr, (for Friday afternoon crew, etc.)

Objectives:

Inject bunch trains in the presence of crossing angles
Bunch spacing 150 ns
It was not a (controlled) beam-beam study
國 Determine the minimum required crossing angle (to gain aperture) at injection

㯖 Might be possible because:

- Number of long range interactions smaller than nominal
Δ Emittance smaller than nominal

Conditions:

- 4 trains in each beam: $(4) 8,8,$,8 bunches (chosen that some bunches have full number of long range interactions for 150 ns spacing, 12 bunches per train would not give more)
\rightarrow Number of long range interactions between 4 and 20 (not up to 6, as reported Saturday)
λ Intensities around 0.9-1.0.10 ${ }^{11}$
- Parallel separation in all IPs ($\pm 2 \mathrm{~mm}$)
\rangle Start at nominal crossing angles ($\pm 170 \mu \mathrm{rad}$)

Procedure:

Set collimators to allow trimming down the crossing angle

國 Reduce crossing angles in all IPs simultaneously, observe life time, orbit closure, beam losses etc.

- Parallel separation remains constant (i.e. beam separation never drops below $\approx 3 \sigma$ for nominal emittance)
\rangle Scan from $\pm 170 \mu \mathrm{rad}$ to $\pm 20 \mu \mathrm{rad}$ (in steps of $20 \mu \mathrm{rad}$ or $10 \mu \mathrm{rad})$
- No re-optimization of life time between steps

Life time for different α

\rightarrow What we saw in the control room
\rightarrow Life time steps corresponds to change of angle

\rightarrow Recorded beam size as function of time (angle)
\rightarrow No dramatic dependence, as expected

First observations I:

\geqslant Little effect on life time between $\pm 170 \mu \mathrm{rad}$ and $\pm 120 \mu \mathrm{rad}$
λ First (very small) effect at $\pm 100 \mu \mathrm{rad}$

- First (significant) effect from $\pm 100 \mu \mathrm{rad}$ to $\pm 90 \mu \mathrm{rad}$
- Final drop to less than 1 hr , (remember even with $\pm 20 \mu \mathrm{rad}$ still minimum $\geq 3-3.5 \sigma$ separation)
- Returning to $\pm 100 \mu$ rad restored the beam lifetime! (hysteresis from crossing angle seems small)
- Don't jump to conclusions, because:

First observations II:

- Measured emittance (WS) significantly smaller than nominal (lower than $3 \mu \mathrm{~m}$)
- Intensities at end of experiment already lower

Not all bunches see the full collision scheme, this life time is a mixture
\rightarrow Analyse bunches separately

\rightarrow Lifetime for different crossing angles (beam 1)

\rightarrow Lifetime for different crossing angles (beam 2)

Bunch current as function of α - beam 1

\rightarrow Separately for the 4 bunch trains
\rightarrow Lifetime for different crossing angles (separate trains)
\rightarrow Not all details understood, but clear trends ..

Bunch current as function of α - beam 2

\rightarrow Separately for the 4 bunch trains
\rightarrow Lifetime for different crossing angles (separate trains)
\rightarrow Not all details understood, but clear trends ..

Observations continued ..

国 Bunches behave very differently, depending on collision pattern
\rangle Different number of long range interaction

- Different encounters, i.e. separation
\rangle Different collision symmetry (left/right of IP)
國 This is what we expected, PACMAN is there ... (maybe stronger than expected)

Qualitatively mostly understood, detailed study required (good quantitative study requires bunch-to-bunch diagnostics and dedicated run time)

Summary

- Very clear long range beam-beam effects can be observed
- Clear correlation between collisions and beam loss
- Smaller separation may be sufficient for 150 ns spacing (although not comfortable), probably difficult for more bunches
- The nominal machine will be (very) interesting...

