Bunch trains and crossing angles at injection

(rumours and facts ...)

reported by W. Herr, (for Friday afternoon crew, etc.)

Objectives:

- Inject bunch trains in the presence of crossing angles
- Bunch spacing 150 ns
- It was not a (controlled) beam-beam study
- Determine the minimum required crossing angle (to gain aperture) at injection
- Might be possible because:
 - Number of long range interactions smaller than nominal
 - Emittance smaller than nominal

Conditions:

- ▶ 4 trains in each beam: (4,) 8, 8, 8 bunches (chosen that some bunches have full number of long range interactions for 150 ns spacing, 12 bunches per train would not give more)
 - Number of long range interactions between 4 and 20 (not up to 6, as reported Saturday)
- \rightarrow Intensities around 0.9 1.0·10¹¹
- \triangleright Parallel separation in all IPs (± 2 mm)
- Start at nominal crossing angles (\pm 170 μ rad)

Procedure:

- Set collimators to allow trimming down the crossing angle
- Reduce crossing angles in all IPs simultaneously, observe life time, orbit closure, beam losses etc.
 - Parallel separation remains constant (i.e. beam separation never drops below $\approx 3 \sigma$ for nominal emittance)
 - Scan from \pm 170 $\mu {
 m rad}$ to \pm 20 $\mu {
 m rad}$ (in steps of 20 $\mu {
 m rad}$ or 10 $\mu {
 m rad}$)
 - No re-optimization of life time between steps

Life time for different α

- → What we saw in the control room
- → Life time steps corresponds to change of angle

Beam size as function of α

- → Recorded beam size as function of time (angle)
- → No dramatic dependence, as expected

First observations I:

- Little effect on life time between \pm 170 μ rad and \pm 120 μ rad
- \triangleright First (very small) effect at \pm 100 μ rad
- \triangleright First (significant) effect from \pm 100 μ rad to \pm 90 μ rad
- Final drop to less than 1 hr, (remember even with \pm 20 μ rad still minimum \geq 3 3.5 σ separation)
- Returning to \pm 100 μ rad restored the beam lifetime ! (hysteresis from crossing angle seems small)
- Don't jump to conclusions, because:

First observations II:

- Measured emittance (WS) significantly smaller than nominal (lower than 3 μ m)
- Intensities at end of experiment already lower
- Not all bunches see the full collision scheme, this life time is a mixture
 - → Analyse bunches separately

→ Lifetime for different crossing angles (beam 1)

→ Lifetime for different crossing angles (beam 2)

- Separately for the 4 bunch trains
- → Lifetime for different crossing angles (separate trains)
- → Not all details understood, but clear trends ...

- Separately for the 4 bunch trains
- → Lifetime for different crossing angles (separate trains)
- Not all details understood, but clear trends ..

Observations continued ...

- Bunches behave very differently, depending on collision pattern
 - Different number of long range interaction
 - Different encounters, i.e. separation
 - Different collision symmetry (left/right of IP)
- This is what we expected, PACMAN is there ... (maybe stronger than expected)
- Qualitatively mostly understood, detailed study required (good quantitative study requires bunch-to-bunch diagnostics and dedicated run time)

Summary

- > Very clear long range beam-beam effects can be observed
- Clear correlation between collisions and beam loss
- > Smaller separation may be sufficient for 150 ns spacing (although not comfortable), probably difficult for more bunches
- The nominal machine will be (very) interesting ...