LHC status, commissioning plans and a brief overview of upgrade issues

Mike Lamont

25.09.06

LHC Machine - LECC 06

Installation

Sector	In progress	Next
1-2	QRL installation	Finish October 2006
2-3	QRL consolidation	Magnet installation
3-4	Magnets in place, quench protection/cryo instrumentation	Interconnects
4-5	Most magnets in place	Finish interconnects
<mark>5-6</mark>	Most magnets in place	Interconnects
6-7	Magnet installation	All magnets in Feb. 07
7-8	Most magnets in place, interconnects	Cool-down November 06
8-1	All magnets in place, interconnects	Finish interconnects Cool-down - start 07

Note: Cryogenic supply lines (QRL) – solved problem

Dipoles

Cryodipole overview

Updated 31 Aug 2006

Data provided by D. Tommasini AT-MAS, L. Bottura AT-MTM

Magnets

5 September, the 1000th cryo-magnet was installed in the LHC tunnel in the arc between point 3 and point 4.

1000 out of 1746

(1232 dipoles)

Last one due in in March 2007

Interconnects

Joining everything up – 1700 times

- Vacuum, bellows, RF contacts plus leak checks
- Cryogenics, thermal shield, heat exchanger
- Bus bars
 - superconducting splices x 10,000 (induction welding)
- Corrector circuit
 - splices x 50,000 (ultrasonic welding)

Huge, painstaking & industrialised Clearly on the critical path

Responsible for feeding the room temperature cables into the cold mass.

25.09.06

52 total

DFBX – triplets

C.BAULT le 13-03-2006

DFBAO EN RA83

LHC Machine - LECC 06

DFBs

Have to be in position before cool-down

25.09.06

Updated 31 Aug 2006

Data provided by A. Perin AT-ACR

Miscellaneous

MQ.30L8, 31.01.2006

Potential aperture restrictions

LHC Machine - LECC 06

Bits and bobs

SECTOR 1-2

Installation - remarks

It is a huge job

- **QRL problem solved**
- Magnet installation proceeding well
- Interconnects work in progress
- DFBs just in time (plus some other stuff...)
- A lot still to do, plus the challenges of hardware commissioning:
- First sector to start cool-down in November
- Powering test to still to come
 - Quench protection, quenches, energy extraction, cold leaks, DFB commissioning at cold, interlocks etc. etc.

And that's before we even mention beam. Challenges will include:

- High beam energy demands on machine protection system
- Very low tolerance to beam loss (quenches)
- Which implies tight constraints on key beam parameters
- Dynamic characteristics of the magnets (persistent currents etc.)

XMAS 2007

End 2007

Hardware Commissioning qualification of circuits to 7 TeV – not trivial

End 2007

	56		67	78		81		12		23	34		45
0										450 GeV HWC			
UCI						ACCES	S	TESTS					
			Operatio	ons testing				450 GeV					
Nov	Machine C (Access, V	Machine Checkout (Access, Vacuum, Equipment Tests, Controls, Cycle (partial), Beam dump, Interlocks and INB)									d INB)		
	Beam Commissioning at 450 GeV												
					16	days beam	ti	me estimat	ed				
Dec	Calibration run (Collisions at 450GeV + ramp commissioning etc.)												

Sectors 5-6, 6-7, 1-2 & 2-3:

- baseline commissioning of main circuits to 1.1 TeV
- minimal circuit set

450 GeV – Calibration Run

• Operations' aims:

- Commission essential safety systems
- Commission essential beam instrumentation
- Commission essential hardware systems
- Perform beam based measurements to check:
 - Polarities
 - Aperture
 - Field characteristics
- Establish collisions
- Provide stable two beam operation at 450 GeV
- Interleave collisions with further machine development, in particular, the ramp.

Should provide a firm platform for eventual commissioning to 7 TeV and provide adequate lead time for problem resolution.

Machine Configuration

• Optics:

- β*= 11 m in IR 1 & 5 (no squeeze)
- β*= 10 m in IR 2 & 8
- Limited by triplet aperture
- Crossing angles off
 - 1, 12, 43, 156 bunches per beam
- Separation bumps two beam operation
- Shift bunches for LHCb
 - 4 out of 43 bunches, or 24 bunches out of 156
- Solenoids & Exp. Dipoles etc.
 - off (to start with)

450 GeV Beam Commissioning: Phases

	Phase	Main Objectives
1	First turn	End TI2, TI8, injection region, BPMs, BLMs, thread first turn, polarity checks
2	Establish circulating beam	Closed orbit, chromaticity, energy matching, tune, RF capture
3	Initial commissioning	RF, control & correction, transverse diagnostics, linear optics checks, BLMs, beam dump, machine protection
4a	Measurements	Beta beating, aperture, field quality checks, transfer functions
4b	System commissioning	RF, transverse feedback, BLMs to MPS, tune PLL, collimators and absorbers
5 a	Two beam operations	Parallel injection, separation bumps, instrumentation and control
5b	Collisions	Establish collisions, luminosity monitors, collimation, solenoids
6	Increase intensity	Collimators, LFB, multi-batch injection

Beam

• Pilot Beam

Single bunch, 5 - 10 x 10⁹ protons, reduced emittance

- Pilot++
 - Single bunch 3 to 4 x 10¹⁰ protons
- 4, 12 bunches etc. pushing towards...
- 43,156 bunches

3 to 4 x 10¹⁰ ppb

	Bunches	Bunch Intensity [10 ¹⁰ p]	Total intensity [10 ¹⁴ p]	Fraction of nominal
One pilot	1	0.5	0.00005	1.6 10 ⁻⁵
12 Nominal	12	10.0	0.01	3.7 10 ⁻⁴
43	43	4.0	0.017	5.3 10 ⁻³
156 - I	156	4.0	0.062	0.019
156 - II	156	10.0	0.156	0.048
75 ns	936	4.0	0.37	0.12
25 ns - 1	2808	4.0	1.1	0.35
Nominal	2808	11.5	3.2	1.0

Time

	Phase	Beam time [days]	Beam
1	First turn	4	1 x Pilot
2	Establish circulating beam	3	1 x Pilot
3	450 GeV – initial	3	1 x Pilot++
4a	450 GeV - consolidation	1-2	1 x Pilot++
4b	450 GeV – system commissioning	2-3	1 x Pilot++
5 a	2 beam operations	1	2 x Pilot++
5 b	Collisions	1-2	2 x 1 x 10¹¹ →
		16 days	

Given an operational efficiency of 60%, this gives an elapsed time of about 26 days. CAVAET: MACHINE AVAILABILITY

Some opportunities for parallel development and parasitic studies...

450 GeV - Performance

			Reasonable	Maximum
k _b	43	43	156	156
i _b (10 ¹⁰)	2	4	4	10
β* (m)	11	11	11	11
intensity per beam	8.6 10 ¹¹	1.7 10 ¹²	6.2 10 ¹²	1.6 10 ¹³
beam energy (MJ)	.06	.12	.45	1.1
Luminosity (cm ⁻² s ⁻¹)	2 10 ²⁸	7.2 10 ²⁸	2.6 10 ²⁹	1.6 10 ³⁰
event rate 1(kHz)	0.4	2.8	10.3	64
W rate ² (per 24h)	0.5	3	11	70
Z rate ³ (per 24h)	0.05	0.3	1.1	7

Several days

1.	Assuming 450GeV inelastic cross section	40 mb
2.	Assuming 450GeV cross section $W \rightarrow lv$	1 nb
3.	Assuming 450GeV cross section $Z \rightarrow ll$	100 pb

25.09.06

Calibration Run 2007

• 6 weeks beam time

• 3 weeks beam commissioning

- Essentially single beam, low intensity for the most part
- 3 weeks collisions
 - Single bunch initially, with staged increase to 156 x 4 x 10¹⁰ (+)
 - Luminosities: 1.3 10²⁸ to 2.6 10²⁹ cm⁻²s⁻¹ (+)
 - Interleafed with low intensity single beam MD
 - Initial ramping tests to 1.1 TeV etc.

Beam spot – transverse

- Bigger beams at 450 GeV
 - 290 μm at β* = 11 m.
 - 277 μm at β* = 10 m.
- 2 challenges:
 - Colliding the beams: should be able to get them within 150 µm using BPMs
 - Orbit stability: feedback to be commissioned
- Vertex position
 - Transverse: 1 mm run-to-run, 3 mm long term
 - Absolute position: approx. ± 400 μm from BPMs

Transverse beam size from one of: Synchrotron Light Monitor, Rest Gas Monitor or Wire Scanner plus optics measurements

Relative Luminosity Measurement

- Low luminosity will be straining bounds of machine luminosity monitors (LBL ionization chambers BRAN)
 - Low event rates of high energy neutrons in BRAN
 - Background, Signal/Noise
- Initial collisions with single bunch 1.1 x 10¹¹ to give BRAN something to see.
- Other ideas:
 - Beam-beam coupling signal from high sensitivity BPM

LHC Machine - LECC 06

- Schottky
- Scintillators [machine]

Background

Beam gas interactions and beam halo muon/hadron rates

- **Residual gas within experiments**
 - Baked out low rates
- **Residual gas in LSSs**
- Gas pressure in adjacent cold sectors Relative high pressures, elastic scattering
- Inefficiency of cleaning in IR7 & IR3

Nikolai Mokhov

See: M Huhtinen, V. Talanov, G. Corti et al

LHC Machine - LECC 06

Vacuum – 450 GeV

	Stage 1		Stage 2	Nominal
Months of operation	4		7	7
Days of operation	100		175	175
Bunches	1/43/156		936/2808	2808
Protons/bunch	10 ¹⁰ -9 10 ¹⁰		10 ¹⁰ -9 10 ¹⁰	1.1 10 ¹⁰
Protons	10^{10} -1.4 10^{13}	(.7–9.8) 10 ¹³	$3.2 \ 10^{14}$
Current (mA)	0.02 - 25		70 - 80	582
Average current (mA)	8		140	582

\mathbf{n}_b	43	156	2808
Start-up	1.8×10^{12}	5.7×10^{12}	4.3×10^{13}
Nominal	4.2×10^{11}	6.3×10^{11}	5.3×10^{12}

Table 3: Average H_2 equivalent residual gas density, [mol/m³] in the IR1 & 5 at the machine start-up and at nominal operation after the machine conditioning with the beam of different intensity.

A. Rossi LPR 783

The 450 GeV run will be stage 0.

No conditioning, minimal pump-down time in some sectors. Static vacuum.

Potentially some LSSs un-baked - no NEG activation. Experiments should be baked.

Vacuum life time shall be greater than 35 h and 50 h for 2007 and 2008 respectively cf 100 h nominal

Halo

- Scrape in the SPS, collimate in the transfer lines
- Expect halo generation from
 - RF noise
 - Intra Beam Scattering
 - Optics mismatch
 - Beam-gas
 - Poor parameter control (tune, chromaticity), poor lifetime, stream particles to aperture limit
- Nominally this is cleaned by the collimation system with the resulting tertiary halo potentially finding its way to the experiments insertion – and the tertiary collimators

Vadim Talanov & team plan detailed studies, given scenario of collimator operation at the 450 GeV start-up (loss maps etc.)

450 GeV: Collimation I

- Lower intensity
- Lower energy
- Bigger beams
- Un-squeezed
- Aperture limitation is the arcs & DS

•	With low beam intensity:	
	Primary collimators:	<mark>6</mark> σ
	Secondary collimators:	out
	Tertiary collimators:	out
	Absorbers:	out
	TCDQ:	10σ
	TDI:	out

450 GeV: Collimation II

With an optimistic beam intensity we might see:

Primary collimators:	5.7σ
Secondary collimators at	6.7σ
Tertiary collimators:	out
Absorbers:	out
TCDQ:	9σ
TDI:	6.8σ

Un-squeezed – tertiary collimators out – aperture limit in the arcs – would expect low halo losses in IRs

Who knows...

111 LHC Run 1234	CERN AB data o	31-11-0 f 31-11-0	7 12 7 12	:20:26 :20:16
— ** S	STABLE	BEAN	MS **	· —
$\mathbf{E} = 0.450 \text{ TeV/c}$	Beam	In Co	oast O	.5 h
Beams	Beam 1	Be	am 2	
#bun	43	4	3	
Nprot(t)	1.71e12	1.'	73e12	
tau(t) h	121	1	L 40	
Luminosities	ATLAS	ALICE	CMS	LHC-B
L(t) 1e28 cm-2s-1	5.23	6.23	7.13	5.21
/L(t) nb-1	0.78	0.68	0.78	0.52
BKG 1	1.20	0.52	0.90	0.43
BKG 2	0.85	0.82	0.50	0.80

Comments 31-11-07 11:40:26 COLLIMATORS in coarse settings Separation Scan in IR1/Atlas

Helmut Burkhardt

LHC Machine - LECC 06

Staged commissioning plan for protons@7TeV

	7TeV	ootap		and MKB
	_			
No beam			Beam	

2008

Should look something like...

Beam Commissioning: usual stuff..

Full commissioning to 7 TeV

		Rings	Total [days] both rings	
1	Injection and first turn	2	6	
2	Circulating beam	2	3	
3	450 GeV - initial	2	5	
4	450 GeV - detailed	2	12	Should benefit
5	450 GeV - two beams	1	2	from 450 GeV run
6	Snapback - single beam	2	4	
7	Ramp - single beam	2	8	
8	Ramp - both beams	1	3	
9	7 TeV - setup for physics	1	2	
10	Physics un-squeezed	1	-	Given 450 GeV run and
	TOTAL to first collisions		45	reasonable machine
11	Commission squeeze	2	б	availability might expect
12	Increase Intensity	2	б	TIPST / Tev collisions in
13	Set-up physics - partially squeezed.	1	2	
14	Pilot physics run			RHIC 2000:
25.00.0	6	I HC Machine - I		 First beam April 3rd First successful ramp: June 1st

7 TeV commissioning

- Around 2 months elapsed time to establish first collisions
 - Mostly pilot++, low intensity, single beam, alternate rings
 - No crossing angle
 - No squeeze: β* = 17 10 17 10 m.
- Stage 1 vacuum conditions
 - Experiments & LSSs should be baked out
 - Other LSSs potentially not
 - Full details: LHC project note 783
- Collimation during initial commissioning
 - Minimal collimation scheme under discussion, probably primary & secondary with no tertiary/absorbers
 - Again, un-squeezed, expect low halo loss in experiments
- First collisions
 - Single bunch
 - Un-squeezed
- Pilot physics

Pilot physics

Sub-phase	Bunches	Bun. Int.	beta*	Luminosity	Time	Int lumi
First Collisions	1 x 1	4 x 10 ¹⁰	17 m	1.6 x 10 ²⁸	12 hours	0.6 nb ⁻¹
Repeat ramp - same conditions	-	-	-	-	2 days @ 50%	1.2 nb ⁻¹
Multi-bunch at injection & through ramp - collimation	-	-	-	-	2 days	-
Physics	12 x 12	3 x 10 ¹⁰	17 m	1.1 x 10 ²⁹	2 days @ 50% in physics	6 nb ⁻¹
Physics	43 x 43	3 x 10 ¹⁰	17 m	4.0 x 10 ²⁹	2 days @ 50% in physics	30 nb ⁻¹
Commission squeeze – single beam then two beams, IR1, IR5	-	-	-	-	2 days	-
Measurements squeezed	-	-	-	-	1 day	-
Physics	43 x 43	3 x 10 ¹⁰	10 m	7 x 10 ²⁹	3 days - 6 hr t.a 70% eff.	75 nb ⁻¹
Commission squeeze to 2m collimation etc.	-	-	-	-	3 days	-
Physics	43 x 43	3 x 10 ¹⁰	2 m	3.4 x 10 ³⁰	3 days - 6 hr t.a 70% eff.	0.36 pb ⁻¹
Commission 156 x 156	-	-	-	-	1 day	
Physics	156 x 156	2 x 10 ¹⁰	2 m	5.5 x 10 ³⁰	2 days - 6 hr t.a 70% eff.	0.39 pb ⁻¹
Physics	156 x 156	3 x 10 ¹⁰	2 m	$1.2 \ge 10^{31}$	5 days - 5 hr t.a 70% eff.	2.3 pb ⁻¹
					28 days total	

Leading into 75 ns running

Conclusions

• 450 GeV calibration run

- 3 weeks single beam machine commissioning
- Low beam current but potentially interesting vacuum conditions
- Minimal collimation scheme
- 3 weeks collisions with the hope to push over 10²⁹ cm⁻²s⁻¹
- Detailed BG studies planned

• 7 TeV

- 6-8 weeks single/two beam machine commissioning
- Low beam current but potentially interesting vacuum conditions
- Un-squeezed initially, with minimal collimation
- Still work to do after first collisions pilot physics
- Detailed BG studies already performed and on-going

http://cern.ch/lhc-commissioning/

LHC Upgrade Brief Overview

Acknowledgments:

Walter Scandale, Francesco Ruggiero

- years due to high radiation doses
- (2) the statistical error halving time will exceed 5 years by 2011-2012
- (3) therefore, it is reasonable to plan a *machine luminosity upgrade based on new low-β IR magnets before ~2014*

Basic Issues

- Head-on beam-beam
- Long-range beam-beam
- Crossing angle
 - Larger reduces luminosity
 - Larger eats aperture
- β* beam size at IP
 - Smaller the β* larger the beam size in the triplets aperture

$$\sigma^* = \sqrt{\beta^* \varepsilon}$$
$$F = \frac{1}{\sqrt{1 + \left(\frac{\sigma_z \theta_c}{2\sigma^*}\right)^2}}$$

Some Options

• More beam

- Increase bunch intensity (→ upgrade injectors)
- Increase number of bunches reduce bunch spacing to 12.5 ns (or 10 ns or...) - see Andy Butterworth later this week
- Super bunches
- Increase F
 - Redesign insertions
 - Crab cavities
- Fight the long range beam-beam
 - Wires
- Squeeze harder
 - New magnets

Options

IR upgrade

goal: reduce β^* by at least a factor 2

options: NbTi 'cheap' upgrade, NbTi(Ta), Nb₃Sn new quadrupoles new separation dipoles

factors driving IR design:

maximize magnet aperture, minimize distance to IR

- minimize β*
- minimize effect of LR collisions
- large radiation power directed towards the IRs
- accommodate crab cavities and/or beam-beam compensators. Local Q' compensation scheme?
 compatibility with upgrade path
- compatibility with upgrade path

alternative IR schemes

`cheap' IR upgrade

in case we need to double LHC luminosity earlier than foreseen

short bunches & minimum crossing angle & BBLR

each quadrupole individually optimized (length & aperture) IP-quad distance reduced from 23 to 22 m NbTi, $\beta^*=0.25$ m possible

Expected factors for the LHC luminosity upgrade

The peak LHC luminosity can be multiplied by:

- factor 2.3 from nominal to ultimate beam intensity (0.58 \Rightarrow 0.86 A)
- factor 2 (or more?) from new low-beta insertions with *B** = 0.25 m

Major hardware upgrades (LHC main ring and injectors) are needed to exceed ultimate beam intensity. The peak luminosity can be increased by:

 factor 2 if we can double the number of bunches (maybe impossible due to electron cloud effects) or increase bunch intensity and bunch length

Increasing the LHC injection energy to 1 TeV would potentially yield:
 factor ~2 in peak luminosity (2 x bunch intensity and 2 x emittance)
 factor 1.4 in integrated luminosity from shorter T_{turnaround}~5 h
 thus ensuring L~10³⁵ cm⁻² s⁻¹ and ∫Ldt ~ 9 x nominal ~ 600/(fb*year)

Various LHC upgrade options

parameter	symbol	nominal	ultimate	shorter bunch	longer bunch
no of bunches	n _b	2808	2808	5616	936
proton per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	6.0
bunch spacing	∆t _{sep} [ns]	25	25	12.5	75
average current	/ [A]	0.58	0.86	1.72	1.0
normalized emittance	<i>ɛ</i> _n [µm]	3.75	3.75	3.75	3.75
longit. profile		Gaussian	Gaussian	Gaussian	flat
rms bunch length	$\sigma_{\!_{ m Z}}$ [cm]	7.55	7.55	3.78	14.4
ß* at IP1&IP5	<i>ቤ</i> * [m]	0.55	0.50	0.25	0.25
full crossing angle	$\theta_{\rm c}$ [µrad]	285	315	445	430
Piwinski parameter	$\theta_{\rm c} \sigma_{\rm z} / (2\sigma)$	0.64	0.75	0.75	2.8
peak luminosity	L [10 ³⁴ cm ⁻² s ⁻¹]	1.0	2.3	9.2	8.9
events per crossing		19	44	88	510
luminous region length	$\sigma_{ m lum}$ [mm]	44.9	42.8	21.8	36.2

Upgrades - summary

Baseline scenario includes:

- a reduction of β^* to 0.25 m,
- an increased crossing angle
- and a new bunch-shortening RF system.
- Corresponding peak luminosity with ultimate beam intensity is 4.6 x 10³⁴ cm⁻² s⁻¹ at two IP's.
 - Electron cloud effects and/or cryogenic heat loads may exclude the possibility to double the number of bunches.
- R&D ongoing
 - Magnets, crab cavities, LRBB compensation etc. etc.
- Several LHC IR upgrade options are currently being explored
- Major conference here in Valencia in 3 weeks (CARE HHH)