- Sector 34 incident present understanding
- Picking up the pieces
- Making sure it doesn't happen again
- Schedule before beam
- Schedule 2009-2010
- Re-commissioning with beam
- 2009 2010 run

Mike Lamont

1. What went wrong

Ruptured bus-bar interconnection

Electrical joint in 12 kA bus bar

"What makes a good joint?"

A. Verweij

A resistive joint of about 220 n Ω with bad electrical and thermal contacts with the stabilizer

Thermal runaway – model versus reality

Voltage across the splice and temperature rise

LHC status and commissioning

5

2. Pick up the pieces

Message: huge amount of work required to repair the damage

- Take all damaged magnets out
 - □ 53 total, 39 dipoles, 14 SSSs (Short Straight Section quad++)
- Fix the cryogenics supply line
- Fix and clean the beam vacuum
- Repair the magnets
- Test repaired magnets and spares used
- Re-install
- Re-interconnect
- Cool
- Test

Damage: magnet displacements

Remove and repair

Remove damaged magnets

Preparation of recovery facilities

Lucio Rossi

23/03/2009

A22 (1085)/ B22 (3118) / C22 (1071): under preparation for cold testing

Beam Vacuum cleaning

Beam Screens with MLI and Fibers

QBQI 8L4.V2

A10L4.V2

B9R3.V1

A13L4.V1

QBQI 12L4.V1

QBQI 14L4.V2 23/03/2009

LHC status and commissioning

13

Beam Vacuum Contamination – S34

Point 3

3. Try and make sure it never happens again

- 1. Find any other bad splices
- 2. Improve protection
- 3. Reduce potential damage

Check all splices

- □ QPS snapshot and calorimetry in situ (5/8 sectors)
- Bus-bar splice resistance measurements by means of nanovoltmeters
- Check old SM18 data
- Better protection
 - Extended QPS system local rather than global bus-bar protection
- Minimize collateral damage
 - □ Anticipate Maximum Credible Incident (MCI)
 - New relief ports
 - □ New jacks

Resistive heating of bad splices can be measured.

Temperature drift during 7 kA current flat top (15 Sep 2008)

23/03/2009

17

Measurements in cold sectors have revealed potential problems in splices inside magnets

Remove

QPS can also see "bad" splices

Sector A12: A15R1 – C19R1: Dipole Measurements made on 03.11.08

Improved quality control

Ultrasound splices

US inspection of defective inter-pole splice in MB 2334 has confirmed the US test to be a very useful QC tool.

- 1. The quench is detected based on voltage measurements over the coils (U_mag_A, U_mag_B).
- 2. The energy is distributed over the entire magnet by force-quenching with quench heaters.
- 3. The power converter is switched off.
- 4. The current within the quenched magnet decays in < 200 ms, circuit current now flows through the ,bypass' diode that can stand the current for 100-200 s.
- 5. The circuit current/energy is discharged into the dump resistors.

Quench Protection System upgrade

- Upgrade required to cover:
 - local rather than global coverage of bus bars
 - symmetric quenches
- Massive job
 - New electronics
 - Massive cabling effort

QPS update is on the critical path for the re-start of LHC

240 km of cables (= Chamonix – Venezia) 4400 individual cables 7800 connectors 0 errors permitted

23/03/2009

Maximum Credible Incident

Alleviate knock-on effects - try and cater for the worse

Additional relief valves on dipole vacuum enclosure

- Four warm sectors: equip all dipoles with one DN200 flange and relief valve
- Four cold sectors: equip all SSS flanges with relief valves, fit relief valves on dipoles in 2010 shutdown

plus stand alone magnet and feed boxes

F. Bertinelli

4. Schedule until beam

Message: There is a lot of work going on all around the ring:

- repair
- consolidation

Chamonix - baseline decisions

Relief valves

- 4 warm sectors
- □ Inner triplets & stand alone magnets
- Feed boxes
- □ Compensatory measures on SSSs in cold sectors
- New quench protection system fully deployed in 2009
- Magnets out in S12 and S67
- Calorimetric, QPS, electrical measurements ASAP on all sectors not yet checked.

Katy Foraz

Long Straight Sections

Katy Foraz

••• With powering tests

Katy Foraz

Fair to say that the schedule is very tight

4. Schedule with beam

Schedule with running in winter months

Gains 20 weeks of LHC physics (independent of "slip")

Year	2009 2010										_															
Month	F	М	А	М	J	J	Α	S	0	Ν	D	J	F	м	Α	М	J	J	А	S	0	Ν	D	J	F	М
Baseline	SH	SH	SH	SH	SH	SH	SH	SH	SU	P	11	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	SH	SH	SH	SH
	24 weeks physics possible																									
Base '	SH	SH	SH	SH	SH	SH	SH	SH	SU	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	PH	SH	SH	SH	SH	SH	SH
	44 weeks physics possible																									
	Ģ	Gai	n 2	0 v	vee	eks	of	ph	iys	ics	n	20	10	by	ru	nn	ing	gdu	urii	ng	wi	nte	r n	noi	ntł	IS
														~	_							\nearrow				L
															HI	GH	pri	ce E	lec	tric	ity					
Delay (AW)		~			CUL	CUL	CLL	CLL	CLL.	CLL	DU	DU	DU	DU	DH	ъч	DH	DU	DU	DH	DЦ	CLL	сu	C 11	C 11	сц
Delay (4VV)	SH	SH	SH	SH	эн	эн	эп	эп	эп	50	РП	PH	РН	РП	E LL	РП	PH	E LL	РП	E LL	РП	эп	эп	эн	эн	эп

Steve Myers

Schedule outline

- Normal operation of the whole complex up to mid-November 2009.
- Operation of Linac2, PSB, PS and SPS with LHC beams only from mid-November to the beginning of April.
- Technical stop around Christmas
 - □ exact length to be defined.
- Normal operation of the whole complex from April until end October 2010.

5. Beam Commissioning

🐱 Beam – Chamonix baseline

- 4 TeV "on the way" to 5 TeV (no higher in 2010)
- Physics at 5 TeV
- Start with low number of bunches, low intensity
 increase slowly 1,4,12,43, 156....
- Estimated integrated luminosity
 - □ during first 100 days of operation.. ≈100pb-1
 - □ during next 100 days of operation.. ≈ 200 300 pb-1
- End of 2010 run one month ions

Beam Commissioning to 5 TeV Collisions

		Rings	Total [days]
1	Injection and first turn	2	1
2	Circulating beam	2	2
3	450 GeV - initial	2	3
4	450 GeV - detailed	2	3
5	450 GeV - two beams	1	1
6	Snapback - single beam	2	3
7	Ramp - single beam(s)	2	6
8	Ramp - both beams	1	2
9	7 TeV - setup for physics	1	1
10	Physics un-squeezed	1	-
	TOTAL TO FIRST COLLISIONS		22
11	Commission squeeze	2	6
12	Increase Intensity	2	6
13	Set-up physics - partially squeezed.	1	2
14	Pilot physics rup		

Milestones of 60 hours of LHC beam

S. Redaelli, Cham109 - 05/02/2009

2008 gives us some confidence in the machine

- magnets, aperture, alignment, model, instrumentation, controls, key sub-systems...
- Approx 4 weeks to establish first collisions
 - □ Given reasonable machine availability (caveat)
 - Un-squeezed, low intensity
 - Optimistic but not without cause

Continued commissioning thereafter

- Increased intensity
- Squeeze

RHIC 2000: - First beam April 3rd - First successful ramp: June 1st - First collisions June 12th

2009 – 2010 - ball park

Month	No. Bunches	Protons per bunch	β* [m]	% Nom	Peak luminosity cm-2s-1	Integrated Iuminosity
1						
2	43	3 x 10 ¹⁰	4	0.4	1.2 x 10 ³⁰	100 – 200 nb ⁻¹
3	43	5 x 10 ¹⁰	4	0.7	3.4 x 10 ³⁰	~2 pb ⁻¹
4	156	5 x 10 ¹⁰	2	2.5	2.5 x 10 ³¹	~13 pb ⁻¹
5	156	7 x 10 ¹⁰	2	3.3	4.9 x 10 ³¹	~25 pb ⁻¹
6	720	3 x 10 ¹⁰	2	6.7	4.0 x 10 ³¹	~21 pb ⁻¹
7	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹
8	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹
9	720	5 x 10 ¹⁰	2	11.2	1.1 x 10 ³²	~60 pb ⁻¹
10					lons	
Total						200 – 300 pb ⁻¹

- Push: bunches per beam, β*, bunch intensity
- N bunches displaced for LHCb

- 8 hour fill length
- 5 hour turn around
- 20 hour luminosity lifetime
- 40% machine availability
 - rest of time: commissioning, machine development, access, recovery etc.
- No squeeze beyond $\beta^* = 2.0$ m.
 - □ Aperture
- Intensity limited to around 10% of nominal

Intensity limit in 2010?

Ralph Assmann

Performance model to include

- energy dependence of cleaning efficiency
- quench limits.

The calculated total intensity limits at 5 TeV:

- are compatible with the figures shown earlier (but not too much more)

"Cassandra has always been misunderstood and misinterpreted as a madwoman or crazy doomsday prophetess." L. Fitton

Stage B – 50 ns – just to make the point

- Up to 1404 bunches
- Parameter tolerances:
 - □ Tightened up. Optics/beta beating under control
 - Emittance conservation through the cycle
 - Collimator cleaning efficiency versus quench limit
- Commission crossing angles.
 - □ Injection, ramp and partial squeeze
 - □ Long range beam-beam, effect on dynamic aperture,
- Need for feedback
 - Orbit plus adequate control of tune and chromaticity through snapback.
- Lifetime and background optimization in physics
 - □ with a crossing angle and reduced aperture

Plus Machine Protection with increased intensity

- Open heart surgery on-going starting the stitching up
- All splices to be measured carefully
- Preventive measures to be deployed:
 - □ Relief valves, extended Quench Protection...
- Beam scheduled for end September (tight)
- Run through the winter 10 month physics run aiming to deliver a few 100s pb⁻¹

It's a beautiful machine but we will have to progress carefully