LHC status and commissioning

- Sector 34 incident – present understanding
- Picking up the pieces
- Making sure it doesn’t happen again
- Schedule before beam
- Schedule 2009-2010
- Re-commissioning with beam
- 2009 – 2010 run

Mike Lamont
1. What went wrong
Ruptured bus-bar interconnection

Vac. chamber

Dipole busbar
Electrical joint in 12 kA bus bar

“What makes a good joint?”

A. Verweij

A resistive joint of about 220 nΩ with bad electrical and thermal contacts with the stabilizer

No electrical contact between wedge and U-profile with the bus on at least 1 side of the joint

No bonding at joint with the U-profile and the wedge

23/03/2009 LHC status and commissioning
Voltage across the splice and temperature rise
2. Pick up the pieces

Message: huge amount of work required to repair the damage
Fix the problem

- Take all damaged magnets out
 - 53 total, 39 dipoles, 14 SSSs (Short Straight Section – quad++)
- Fix the cryogenics supply line
- Fix and clean the beam vacuum
- Repair the magnets
- Test repaired magnets and spares used
- Re-install
- Re-interconnect
- Cool
- Test
Damage: magnet displacements
Remove and repair

Remove damaged magnets

Preparation of recovery facilities
B26 (2111): first de-cryostating

SSS-243 (replace Q23)
SSS-369 (replace Q32)
SSS-277 (replace Q22)
SSS-055 (replace Q27)
Q32 SSS-200: under de-cryostating with Q31 and Q29
A22 (1085) / B22 (3118) / C22 (1071): under preparation for cold testing
Beam Vacuum cleaning

Beam Screens with MLI and Fibers

QBQA 8L4.V2

QBQA 14L4.V2

A10L4.V2

A13L4.V1

B9R3.V1

QBQA 12L4.V1

23/03/2009

LHC status and commissioning
Beam Vacuum Contamination – S34

Point 3

Point 4

Plus

- Cryogenic Supply Line
- Beam Instrumentation
- Civil engineering
- Quench Protection system
- etc..

Miguel Jimenez

23/03/2009

LHC status and commissioning
3. Try and make sure it never happens again

1. Find any other bad splices
2. Improve protection
3. Reduce potential damage
Take remedial action

- Check all splices
 - QPS snapshot and calorimetry in situ (5/8 sectors)
 - Bus-bar splice resistance measurements by means of nano-voltmeters
 - Check old SM18 data

- Better protection
 - Extended QPS system – local rather than global bus-bar protection

- Minimize collateral damage
 - Anticipate Maximum Credible Incident (MCI)
 - New relief ports
 - New jacks
Resistive heating of bad splices can be measured.

Temperature drift during 7 kA current flat top (15 Sep 2008)
Measurements in cold sectors have revealed potential problems in splices inside magnets.
QPS can also see “bad” splices

Sector A12: A15R1 – C19R1: Dipole Measurements made on 03.11.08

- 0.7mV/7kA = 100nOhm
- 0.7mV * 7kA = 4.9W

Snapshot at 03.09.08: 0.85mV * 8.4kA = 7.1W

B16R1 => 2334

05/11/2008 Zinour Charifoulline, AT/MEI
Improved quality control

Ultrasound splices

US inspection of defective inter-pole splice in MB 2334 has confirmed the US test to be a very useful QC tool.

Courtesy C. Scheurlein
1. The quench is detected based on voltage measurements over the coils (U_mag_A, U_mag_B).
2. The energy is distributed over the entire magnet by force-quenching with quench heaters.
3. The power converter is switched off.
4. The current within the quenched magnet decays in < 200 ms, circuit current now flows through the 'bypass' diode that can stand the current for 100-200 s.
5. The circuit current/energy is discharged into the dump resistors.
Quench Protection System upgrade

- **Upgrade required to cover:**
 - local rather than global coverage of bus bars
 - symmetric quenches

- **Massive job**
 - New electronics
 - Massive cabling effort

- **QPS update is on the critical path for the re-start of LHC**

240 km of cables (= Chamonix – Venezia)
- 4400 individual cables
- 7800 connectors
- 0 errors permitted

23/03/2009 LHC status and commissioning
Maximum Credible Incident

Alleviate knock-on effects - try and cater for the worse

MCI ?

080919 incident
Improved pressure relief

Additional relief valves on dipole vacuum enclosure

- **Four warm sectors**: equip all dipoles with one DN200 flange and relief valve
- **Four cold sectors**: equip all SSS flanges with relief valves, fit relief valves on dipoles in 2010 shutdown

plus improved SSS jacks

plus stand alone magnet and feed boxes
4. Schedule until beam

Message: There is a lot of work going on all around the ring:

- repair
- consolidation
Relief valves
- 4 warm sectors
- Inner triplets & stand alone magnets
- Feed boxes
- Compensatory measures on SSSs in cold sectors

New quench protection system fully deployed in 2009
Magnets out in S12 and S67
Calorimetric, QPS, electrical measurements ASAP on all sectors not yet checked.
Long Straight Sections

Katy Foraz

LHC status and commissioning

23/03/2009
With powering tests

Fair to say that the schedule is very tight
4. Schedule with beam
- Gains 20 weeks of LHC physics (independent of “slip”)

![Schedule with running in winter months](image)

Steve Myers
Schedule outline

- Normal operation of the whole complex up to mid-November 2009.
- Operation of Linac2, PSB, PS and SPS with LHC beams only from mid-November to the beginning of April.
- Technical stop around Christmas
 - exact length to be defined.
- Normal operation of the whole complex from April until end October 2010.
5. Beam Commissioning
Beam – Chamonix baseline

- 4 TeV “on the way” to 5 TeV (no higher in 2010)
- Physics at 5 TeV
- Start with low number of bunches, low intensity
 - increase slowly \(1,4,12,43, 156\ldots\)
- Estimated integrated luminosity
 - during first 100 days of operation.. \(\approx 100\text{pb}^{-1}\)
 - during next 100 days of operation.. \(\approx 200 – 300\text{ pb}^{-1}\)
- End of 2010 run – one month ions
Commissioning stages

STAGE A
INITIAL COMMISSIONING
43 x 43 -> 156 x 156 3x10^{10} per bunch
Zero to partial squeeze

STAGE B
50 ns OPERATION
3-4 x 10^{10} per bunch
Partial squeeze

STAGE C
25 ns OPERATION
3-4 x 10^{10} per bunch
Partial to near full squeeze

LONG SHUTDOWN

STAGE D
25 ns OPERATION
push to nominal per bunch
Partial to full squeeze

Safely establish colliding beams as quickly as possible

- Initial optics:
 - \(\beta^* = 11 \text{ m in IR 1 & 5} \)
 - \(\beta^* = 10 \text{ m in IR 2 & 8} \)

- Crossing angles off
 - Low bunch intensity
 - 1, 12, 43, 156 bunches per beam
 - No parasitic encounters - no long range beam-beam
 - Larger aperture in IRs
Beam Commissioning to 5 TeV Collisions

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Rings</th>
<th>Total [days]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Injection and first turn</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Circulating beam</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>450 GeV - initial</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>450 GeV - detailed</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>450 GeV - two beams</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Snapback - single beam</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Ramp - single beam(s)</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Ramp - both beams</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>7 TeV - setup for physics</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Physics un-squeezed</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TOTAL TO FIRST COLLISIONS</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>Commission squeeze</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Increase Intensity</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td>Set-up physics - partially squeezed.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Pilot physics run</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23/03/2009
Milestones of 60 hours of LHC beam:

- First turn! 10:26
- TDI-B2 out 13:34
- First turn! 14:59
- Circulating beam: 300+ turns First tune meas.
- Beam captured! Circulating>15min
- Detailed measurements
- Long. bunch profile
- Tune meter
- Optics response measurements
- YASP: acquisition & threading
- Fast-BCT
- Beam profile from Wire Scanner

10/09 07:00 11/09 00:00 LOCAL TIME
Stage A: First Collisions

- 2008 gives us some confidence in the machine
 - magnets, aperture, alignment, model, instrumentation, controls, key sub-systems…

- Approx 4 weeks to establish first collisions
 - Given reasonable machine availability (caveat)
 - Un-squeezed, low intensity
 - Optimistic – but not without cause

- Continued commissioning thereafter
 - Increased intensity
 - Squeeze

RHIC 2000:
- First beam April 3rd
- First successful ramp: June 1st
- First collisions June 12th
2009 – 2010 - ball park

<table>
<thead>
<tr>
<th>Month</th>
<th>No. Bunches</th>
<th>Protons per bunch</th>
<th>(\beta^*) [m]</th>
<th>% Nom</th>
<th>Peak luminosity cm(^{-2})s(^{-1})</th>
<th>Integrated luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beam Commissioning</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>(3 \times 10^{10})</td>
<td>4</td>
<td>0.4</td>
<td>(1.2 \times 10^{30})</td>
<td>100 – 200 nb(^{-1})</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>(5 \times 10^{10})</td>
<td>4</td>
<td>0.7</td>
<td>(3.4 \times 10^{30})</td>
<td>~2 pb(^{-1})</td>
</tr>
<tr>
<td>4</td>
<td>156</td>
<td>(5 \times 10^{10})</td>
<td>2</td>
<td>2.5</td>
<td>(2.5 \times 10^{31})</td>
<td>~13 pb(^{-1})</td>
</tr>
<tr>
<td>5</td>
<td>156</td>
<td>(7 \times 10^{10})</td>
<td>2</td>
<td>3.3</td>
<td>(4.9 \times 10^{31})</td>
<td>~25 pb(^{-1})</td>
</tr>
<tr>
<td>6</td>
<td>720</td>
<td>(3 \times 10^{10})</td>
<td>2</td>
<td>6.7</td>
<td>(4.0 \times 10^{31})</td>
<td>~21 pb(^{-1})</td>
</tr>
<tr>
<td>7</td>
<td>720</td>
<td>(5 \times 10^{10})</td>
<td>2</td>
<td>11.2</td>
<td>(1.1 \times 10^{32})</td>
<td>~60 pb(^{-1})</td>
</tr>
<tr>
<td>8</td>
<td>720</td>
<td>(5 \times 10^{10})</td>
<td>2</td>
<td>11.2</td>
<td>(1.1 \times 10^{32})</td>
<td>~60 pb(^{-1})</td>
</tr>
<tr>
<td>9</td>
<td>720</td>
<td>(5 \times 10^{10})</td>
<td>2</td>
<td>11.2</td>
<td>(1.1 \times 10^{32})</td>
<td>~60 pb(^{-1})</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~200 – 300 pb(^{-1})</td>
</tr>
</tbody>
</table>

- **Push**: bunches per beam, \(\beta^* \), bunch intensity
- **N bunches displaced for LHCb**
Assumptions

- 8 hour fill length
- 5 hour turn around
- 20 hour luminosity lifetime
- 40% machine availability
 - rest of time: commissioning, machine development, access, recovery etc.
- No squeeze beyond $\beta^* = 2.0$ m.
 - Aperture
- Intensity limited to around 10% of nominal
Intensity limit in 2010?

Ralph Assmann

Performance model to include
- energy dependence of cleaning efficiency
- quench limits.

The calculated total intensity limits at 5 TeV:
- are compatible with the figures shown earlier (but not too much more)

“Cassandra has always been misunderstood and misinterpreted as a madwoman or crazy doomsday prophetess.” L. Fitton
Stored energy

Limit Stored Energy LHC / Tevatron

Looks very ambitious, doesn’t it?

156 x 5 x10^10 at 5 TeV – 6 MJ – already 5*Tevatron
Stage B – 50 ns – just to make the point

- Up to 1404 bunches
- Parameter tolerances:
 - Tightened up. Optics/beta beating under control
 - Emittance conservation through the cycle
 - Collimator cleaning efficiency versus quench limit
- Commission crossing angles.
 - Injection, ramp and partial squeeze
 - Long range beam-beam, effect on dynamic aperture,
- Need for feedback
 - Orbit plus adequate control of tune and chromaticity through snapback.
- Lifetime and background optimization in physics
 - with a crossing angle and reduced aperture

Plus Machine Protection with increased intensity

23/03/2009
Conclusions

- Open heart surgery on-going – starting the stitching up
- All splices to be measured carefully
- Preventive measures to be deployed:
 - Relief valves, extended Quench Protection…
- Beam scheduled for end September (tight)
- Run through the winter - 10 month physics run aiming to deliver a few 100s pb\(^{-1}\)

It’s a beautiful machine but we will have to progress carefully